Freundliche Menschen, die ihre Geschenke, Bücher, Lehrbücher, CDs, DVDs, Videos, Foto / Elektronikartikel hier bei AMAZON kaufen, unterstützen optimal die Spaßpost! Vielen Dank! Beiträge zur Spasspost bitte nur per E-Mail. Hinweise zu Autoren. |
Gesammelt von Dieter Krejtscha Das Wiegeproblem 1 Das Wiegeproblem 2 Sie haben zehn Säckchen mit Münzen. Jedes Säckchen enthält wiederum zehn Münzen. Jede Münze wiegt zehn Gramm. Die Säckchen sind von eins bis zehn durchnumeriert. Leider enthält eines der Säckchen Falschgeld. Obwohl die zehn Münzen darin genauso aussehen, wie die echten, wiegen sie aber jeweils nur neun Gramm. Mit Hilfe einer Digitalwaage, die Ihnen das genaue Gewicht anzeigt, sollen Sie mit nur einer Wägung herausfinden, in welchem Säckchen sich das Falschgeld befindet. Selbstverständlich dürfen Sie dazu die Münzen aus den Säckchen herausnehmen. Das Verwandtschaftsproblem Sie kommen mit einem Pärchen - einem Mann und einer Frau - ins Gespräch. Nachdem Sie sich vorgestellt haben, wollen Sie wissen, wie die beiden zueinander stehen. Die Frau gibt Ihnen folgenden Hinweis: Seine Mutter ist meiner Mutter Schwiegermutter!" Wie sind die beiden miteinander verwandt? Für manche von uns ein echter Gehirndreher! Das Altersproblem Der Vater dreier Söhne wir von einem Freund besucht, der wissen will, wie alt die drei Jungs sind. Da der Vater weiß, welchen Spaß sein Freund an mathematischen Aufgaben hat, gibt er ihm folgende Antwort: - Das Produkt ihrer Alter ist 36." Nach einigem Nachdenken sagt der Freund, dass ihm dieser Hinweis zur Beantwortung seiner Frage nicht genügt. Er erhält einen zweiten Hinweis: - Die Summe ihrer Alter entspricht meiner Hausnummer." Der Freund, der die Hausnummer natürlich kennt, antwortet, dass ihm diese Auskunft zur Lösung der Aufgabe immer noch nicht ausreicht. Als letzte Hilfe bekommt er den dritten Hinweis: - Mein ältester Sohn nimmt gerade ein Bad." Damit gibt sich der Freund zufrieden. Gehen Sie bei Ihren Überlegungen davon aus, dass das Alter der Söhne ganzzahlig ist. Unsere Frage an Sie lautet: Welche Nummer hat das Haus, in dem der Vater der drei Söhne wohnt? Das Glühlampenproblem Sie befinden sich im Keller Ihres Hauses. An einer Wand befinden sich drei Lichtschalter. Sie sind bezeichnet mit den Nummern 1, 2 und 3. Alle drei Schalter befinden sich in der Aus"-Position. Sie wissen, dass einer der Schalter für die Glühbirne in Ihrer Dachkammer zuständig ist. Für was die beiden anderen Schalter zuständig sind, wissen Sie nicht und interessiert Sie auch nicht. Auf keinen Fall erhalten Sie beim Betätigen der Lichtschalter irgendeine Rückmeldung, sei es ein Lichtschimmer oder das Geräusch eines anlaufenden Motors etc. Ihre Aufgabe ist, herauszufinden, welcher Schalter mit der Glühbirne in der Dachkammer verbunden ist. Ihnen stehen keine Hilfsmittel wie Werkzeuge oder Messgeräte zur Verfügung. Das einzige, was Sie tun können, ist, die Schalter zu betätigen. Normalerweise würden Sie z.B. Schalter 1 in die Ein"-Stellung bringen, dann in die Dachkammer hinauf steigen und prüfen, ob die Glühbirne brennt. Falls ja, hätten Sie den Schalter gefunden. Falls nein, würden Sie zurück in den Keller gehen, Schalter 2 betätigen und den Vorgang wiederholen bis die Birne endlich brennt. So leicht machen wir es Ihnen aber nicht. Sie dürfen aus dem Kellerraum nur einmal nach oben in die Dachkammer gehen und sollen dann schon wissen, welcher Schalter der richtige ist! Wie gehen Sie vor? Das Dattelproblem Sie befinden sich mit Ihrem Kamel und 3000 Datteln am Rande eines Wüstenstreifens. Der Wüstenstreifen dehnt sich nach rechts und links unendlich weit aus und hat eine Breite von 1000 Meilen. Sie sollen mit Ihrem Kamel möglichst viele Datteln auf die andere Seite des Wüstenstreifens transportieren. Dabei gelten folgende Einschränkungen: - Das Kamel kann maximal 1000 Datteln tragen. - Das Kamel verbraucht - unabhängig von der Beladung - eine Dattel pro Meile. Angenommen, Sie beladen das Kamel mit 1000 Datteln (bei 1001 Datteln würde es zusammenbrechen) und lassen es loslaufen. In der Mitte des Wüstenstreifens hätte es schon 500 Datteln verbraucht, auf der anderen Seite der Wüste käme es mit 0 Datteln an. Es könnte nicht mehr zurück, da es auch unbeladen eine Dattel pro Meile benötigt. So geht es also nicht. Wir haben es geschafft, mehr als 530 Datteln auf die andere Seite zu bringen! Wieviel schaffen Sie und wie stellen Sie das an? Das Lügnerproblem Sie befinden sich auf der Wanderschaft und kommen an eine Weggabelung. Sie wissen, dass der eine Weg nach A-Dorf, der andere (wie könnte es anders sein) nach B-Dorf führt. Leider haben böse Buben den Wegweiser geklaut. Zu Ihrem Glück steht ein Mann an der Gabelung, den Sie nach dem Weg fragen können. Man hat Ihnen beim Antritt Ihrer Reise gesagt, dass an dieser Weggabelung immer einer von zwei Brüdern stünde, von denen der eine stets lügt und der andere immer die Wahrheit sagt. Zu Ihrem Pech wissen Sie aber nicht, um welchen der beiden Brüder es sich bei dem Mann handelt. Wie können Sie mit einer einzigen Frage herausfinden, welcher Weg nach A-Dorf führt? Das Hüteproblem Drei Forscher geraten bei einer Expedition in die Hände eines Indianerstammes. Pech gehabt", sagt der Indianerhäuptling, und lässt die Forscher an drei Marterpfähle binden. Gnade!", flehen die Forscher. Mal sehen," sagt der Indianerhäuptling. Ich habe fünf Hüte, zwei rote und drei blaue. Jeder von euch bekommt einen Hut aufgesetzt. Ihr könnt die Farbe eures eigenen Hutes nicht sehen, wohl aber die Farbe der Hüte der anderen beiden Bleichgesichter. Wenn ihr mir jeweils die Farbe eures eigenen Hutes nennt, schenke ich euch die Freiheit." Nach mehreren Minuten der Überlegung nennt jeder der Forscher die richtige Farbe seines Hutes und wird frei gelassen. Welche Farbe haben die Hüte und wie etwa verlief der Denkprozess der drei Forscher? Gehen Sie davon aus, dass den Bleichgesichtern beim Aufsetzen der Hüte die Augen verbunden waren und dass die verbleibenden zwei Hüte außer Sichtweite gebracht wurden. Außerdem konnten die Forscher sich nicht gegenseitig verständigen. Das Hundeproblem Ihre beiden Hunde haben sich entschlossen, zur Verrichtung eines Geschäftes die 5 km entfernte Jahrhundertlinde aufzusuchen. Beide Hunde starten zur gleichen Zeit. Ihr großer dicker Hund bewegt sich mit einer konstanten Geschwindigkeit von 10 km/h auf die Linde zu. Ihr kleiner Hund ist doppelt so schnell und läuft voraus. Als er die Linde erreicht hat, dreht er schnurstracks um und läuft zurück, bis er den dicken Hund wieder erreicht hat. Nun macht er kehrt und läuft wieder zur Linde. Das macht er so oft, bis schließlich der dicke Hund auch bei der Linde angekommen ist. Wir dürfen annehmen, dass die Hunde, unbelastet von mathematischen Problemen, jetzt endlich ihre Geschäfte erledigen konnten. Offensichtlich hat der dicke Hund vom Start bis zum Ziel 5 km zurückgelegt. Welche Gesamtstrecke hat aber der kleine Hund, der ja ständig zwischen seinem großen Freund und der Linde hin und herpendelte, bewältigt? Das Weinproblem Sie haben vor sich zwei Gläser, eines mit 0,25 l Rotwein, das andere mit 0,25 l Weißwein gefüllt. Sie entnehmen aus dem Rotweinglas 2 ml Rotwein, schütten ihn in das Weißweinglas und rühren gründlich um. Jetzt nehmen Sie 2 ml des Weißwein/Rotweingemisches und schütten es in das Rotweinglas zurück. Nach diesem etwas unkonventionellen Vorgehen enthalten beide Gläser wieder die gleiche Getränkemenge wie zuvor (machen Sie sich das aber bitte nicht zur Gewohnheit). Welche der beiden Mixturen enthält nun mehr von dem Fremdwein", der ursprüngliche Weißwein oder der ursprüngliche Rotwein? Das Kistenproblem Drei Kisten sind mit den Aufklebern Äpfel", Orangen", und Äpfel und Orangen" versehen. Alle drei Aufkleber wurden irrtümlich falsch aufgeklebt, d.h., die Kiste mit dem Aufkleber Äpfel" z.B. enthält entweder nur Orangen oder Orangen und Äpfel. Entsprechend falsch sind die Aufkleber der beiden anderen Kisten. Sie dürfen - ohne in die Kisten hineinzusehen oder darin herumzutasten - eine einzige Frucht aus einer der Kisten herausnehmen. Wie müssen Sie vorgehen, um anschließend die Kisten richtig bezeichnen zu können? Das Mädchen/Junge-Problem Sie telefonieren mit einem alten Schulfreund. Er teilt Ihnen mit, dass er zwei Kinder habe. Sie wollen wissen, ob es Jungs oder Mädchen sind. Seine Antwort lautet: Mindestens eines meiner Kinder ist ein Junge. Wie groß ist die Wahrscheinlichkeit, dass auch das andere Kind ein Junge ist? Wenn seine Antwort gewesen wäre mein erstgeborenes Kind ist ein Junge", wie groß wäre dann die Wahrscheinlichkeit, dass das zweite Kind auch ein Junge ist? Gehen Sie davon aus, dass die Geburtenwahrscheinlichkeit für Jungs und Mädchen gleich ist. Das Fehlerproblem In diesen Satz befinden sich ganau drei Fehler. Finden Sie die drei Fehler! Das Hängebrückenproblem Es ist stockfinster und es wird auch so bleiben
zumindest bis Sie die Aufgabe gelöst haben. Es sind keine Tricks erlaubt, wie z.B. Sohn trägt Vater, oder die
Taschenlampe wird über die Brücke geworfen, oder die Batterie erholt sich beim
Ausschalten. Und wo sind die Lösungen? Sie sind mit unsichtbarer Tinte nach diesem Satz geschrieben. Die Lösungen sind auf www.spapo.de/denkaufgaben2.html |